Notes on 2.1

Bisection Method:

Algorithm to find zero of a continuous function in a bounded interval where on the end points the function has different signs.

$f \in C([a, b]), \operatorname{sgn}(f(a)) \neq \operatorname{sgn}(f(b))$

Algorithm.

1. let $a_{1}=a, b_{1}=b, p_{1}=a_{1}+\frac{b_{1}-a_{1}}{2}$
2. while $f\left(p_{i}\right) \neq 0$
a. if $\operatorname{sgn}\left(f\left(a_{i}\right)\right)=\operatorname{sgn}\left(f\left(p_{i}\right)\right)$, let $a_{i}=p_{i}$
b. else let $b_{i}=p_{i}$
c. repeat
note: should really stop if we are close to zero.

theorem 2.1

$f \in C([a, b]), \operatorname{sgn}(f(a)) \neq \operatorname{sgn}(\mathrm{f}(\mathrm{b}))$, then the p_{i} generated from the bisection method is such that: $\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}$
where p is some zero of f in (a, b)
(therefore $p_{n}=p+\mathcal{O}\left(2^{-n}\right)$)

Proof:

1. $p_{n} \in\left(a_{n}, b_{n}\right)$ and $p \in\left(a_{n}, b_{n}\right)$ therefore $\left|p-p_{n}\right| \leq\left|b_{n}-a_{n}\right|$
2. $\left|b_{n}-a_{n}\right|=\frac{1}{2^{n-1}}(b-a)$
